PEMANFAATAN BIOMASSA KULIT KAKAO SEBAGAI MATERIAL KARBON AKTIF BERPORI PADA ELEKTRODA SUPERKAPASITOR DENGAN METODE PIROLISIS

Main Article Content

Kahfi Imam Faqih Kurnia Zulkaisi Dwi Pangarso Lina Cahyaningsih

Abstract

Most of the cocoa pod biomass contains carbon which can be used as electrodes. Carbon is the most important material in the manufacture of supercapacitor electrodes. The proportion of cocoa pod biomass reaches 75% of the total cocoa production per year. Cocoa skin biomass contains about 23-54% cellulose, 60.67% lignin, 36.47% holocellulose, and 18.90% hemicellulose. This content indicates that the skin of the cocoa pods can be processed into charcoal which contains lots of carbon. Based on this, the pod skin has the potential to become a supercapacitor electrode material. Cocoa pod skins are processed into carbon through a pre-carbonation process, then chemically activated using 3.5 M KOH and physically activated through a pyrolysis process at a temperature of 700°C. The characteristics of the carbon material based XRD test results showed that the activated carbon of cocoa pod biomass had a peak purity approaching graphite at 2θ: 24.75o. The resulting carbon biomass of cocoa husk has a surface area and pore volume of 179.15 m²/g and 0.166 cc/g with particles size 12.31 µm. This cocoa pod pod carbon electrode has a resistance value of 0.0307 S/m with a specific capacitance value of 3.32 F/g at a scan rate of 5 mV/s and 1.42 at a scan rate of 10 mV/s.

Article Details

Section
Articles

References

Abioye AM and Nasir F. (2015). Recent Development in the Production of Activated Carbon Electrodes from Agricultural Waste Biomass for Supercapacitors : A Review. Renewable and Sustainable Energy Reviews. 52: 1282–1293. DOI:10.1016/j.rser.2015.07.129.
Aziz H, et al. (2017). Performance Karbon Aktif Dari Limbah Cangkang Kelapa Sawit Sebagai Bahan Elektroda Superkapasitor. Jurnal Zarah. 5(2): 1–6. DOI:10.31629/zarah.v5i2.208.
Brunauer S, Deming LS, Deming WE, Teller E. 1940. On a Theory of the van der Waals Adsorption of Gases. J. Am. Chem. Soc. 62(7):1723–1732.doi:10.1021/ja01864a025.
Channu VSR, Rambabu B and Holze R. (2013). Graphite and Graphene Oxide Electrodes for Lithium Ion Batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects. DOI:10.1016/j.colsurfa.2013.06.018
Dietz, S.D. and Nguyen, (2002), Mesoporous Carbon Electrodes for Double Layer Capacitors, Proceedings of the 2002 NSF Design, Service and Manufacturing Grantees and Research Conference, Tampa.
Ferrari AC and Basko DM. (2013). Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nature Publishing Group. 8(4): 235–246.
DOI:10.1038/nnano.2013.46.
Feroldi D and Carignano M. (2016). Sizing for Fuel Cell / Supercapacitor Hybrid Vehicles Based on Stochastic Driving Cycles. Applied Energy. 183: 645–658. DOI:10.1016/j.apenergy.2016.09.008
Fitrah ASA. (2017). Limbah Padatan Penyamakan Kulit Ikan Sebagai Material Hierarchical Porous Nanocarbon Untuk Aplikasi Supercapacitor, Institut Pertanian Bogor.
Goubard-bretesché N, Crosnier O, Favier F and Brousse T. (2016) Improving the Volumetric Energy Density of Supercapacitors. Electrochimica Acta.DOI:10.1016/j.electacta.2016.01.171
Hsu C, et al. (2014). Electrochimica Acta How the Electrochemical Reversibility of a Battery-Type Material Affects the Charge Balance and Performances of Asymmetric Supercapacitors. Electrochimica Acta. 146: 759–768.
Kamelia M and Fathurohman. (2017). Pemanfaatan Kulit Buah Kakao Fermentasi sebagai Alternatif Bahan Pakan Nabati Serta Pengaruhnya Terhadap Pertumbuhan Ternak Entok (Cairina Muschata). BIOSFER Jurnal Tadris Pendidikan Biologi. 8(1): 66–77.
Konikkara N, Kennedy LJ and Vijaya JJ. Preparation and Characterization of Hierarchical Porous Carbons Derived from Solid Leather Waste for Supercapacitor Applications. Journal of Hazardous Materials. 2016; . DOI:10.1016/j.jhazmat.2016.06.037.
Loppies JE. (2016). Karakteristik Arang Kulit Buah Kakao Yang Dihasilkan Dari Berbagai Kondisi Pirolisis. Jurnal Industri Hasil Perkebunan. 11(2): 105–111.
Malarvizhi TS, Santhi T and Manonmani S. (2014). Acid Treated Lignite Fired Fly Ash For The Removal ff Zn (II) Ions From Aqueous Solution. 4(2): 84–96.
Mentari VA and Maulina S. (2018). Perbandingan Gugus Fungsi dan Morfologi Permukaan Karbon Aktif dari Pelepah Kelapa Sawit Menggunakan Aktivator Asam Fosfat (H3PO4) dan Asam Nitrat (HNO3). Talenta Conference Series: Science and Technology (ST). 1(2): 204–208. DOI:10.32734/st.v1i2.299.
Misran E. (2009). Pemanfaatan Kulit Coklat Dan Kulit Kopi Sebagai Adsorben Ion Pb Dalam Larutan. Jurnal Sains dan Teknologi FMIPA Universitas Sanata Dharma Yogyakarta. 12(1): 795.
Oschatz M, et al. (2015). Interactions Between Electrolytes and Carbon-Based Materials — NMR Studies on Electrical Double- Layer Capacitors , Lithium-Ion Batteries , and Fuel Cells. 1st ed. Elsevier Ltd. DOI:10.1016/bs.arnmr.2015.08.003.
Sianipar, Dkk. 2016. Adsorpsi Fe(II) dengan Arang Kulit Buah Kakao (Theobroma cacao L.) Teraktivasi Asam Klorida. JKK. Vol 5 No.2, 50-59
Storck S, Bretinger H, Maier WF. 1998. Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl. Catal. A Gen. 174(1–2):137–146.doi:10.1016/S0926-860X(98)00164-1.
Tang Y, et al. (2015). A Highly Electronic Conductive Cobalt Nickel Sulphide Dendrite/Quasi-Spherical Nanocomposite for a Supercapacitor Electrode with Ultrahigh Areal Specific Capacitance. Journal of Power Sources. 295: 314–322. DOI:10.1016/j.jpowsour.2015.07.035..
Wijaya M. (2014). Pemanfaatan Limbah Kakao Sebagai Bahan Baku Produk Pangan, in: Seminar Nasional Kimia dan Pendidikan Kimia VI, Program Studi Pendidikan Kimia Jurusan PMIPA FKIP UNS; pp. 528–535.
Yin J, et al. (2016) Electrochimica Acta From Environmental Pollutant to Activated Carbons for High-Performance Supercapacitors. Electrochimica Acta. 201: 96–105. DOI:10.1016/j.electacta.2016.03.196