ZMaysFuel: INOVASI RENEWABLE FUEL LIMBAH TONGKOL JAGUNG SEBAGAI BIOMASSA POTENSIAL PRODUKSI BIOETHANOL MELALUI METODE FED-BATCH SSF TERMODIFIKSI ION MINERAL PO43-/Mg2+/Fe2+

Main Article Content

Muhammad Fakhrudin Zukhri Fatchur Rozi Achmad Dani Baihaqi

Abstract

Indonesia, as a country rich in natural resources, has the opportunity to develop bioethanol to replace fossil energy sources which are less abundant. Bioethanol can be made from biomass containing sugar, starch or cellulose which has been processed into glucose. Compared to other types of biomass, corn cobs are the ideal raw material choice for ethanol biosynthesis with a high lignocellulosic composition, so they can be used as raw materials for bioethanol production with cellulose (38.9%), hemicellulose (28.5%), lignin ( 20.5%). Unfortunately, the rate of development of bioethanol utilization in Indonesia cannot yet be compared to biodiesel, even though the opportunity for bioethanol to achieve success like biodiesel is also large. This can be seen by the issuance of regulations in accordance with the quality standards set by the Minister of Energy and Mineral Resources Number 252.K/HK.02/DJM/2023 which regulate the use of E5 (5% bioethanol and 95% gasoline) in 2023. Therefore, in this research The fed-batch SSF method used aims to produce high bioethanol yields from corncob biomass waste, shorten fermentation time, reduce production costs, and avoid the risk of contamination. To produce optimum bioethanol products using Saccaromicess Cerevisiae through the fed-batch Simulthaneous Saccharification and Fermentation (SSF) process, the mineral ion PO43- (5, 7.5, and 10 ppm), Mg2+ ions (2, 5, and 8 ppm) are added. , and Fe2+ ions (4, 5, and 6 ppm) with a S. Cerevisiae strain concentration of 3% (w/v) and fermentation times of 24, 48, and 72 hours. The optimum value to obtain parameters that comply with bioethanol quality standards for fuel is analyzed using Analysis of Variance (ANOVA) and Response Surface Method (RSM). Optimum operating conditions for the addition of PO43-/Mg2+/Fe2+ mineral ions were modified using the method by adding mineral ions to the fermentation medium and multilevel distillation was carried out until the content reached 95-99.5%, then quality tests were carried out for density, concentration, specific gravity, API Gravity. , and calorific value.

Article Details

Section
Articles

References

Afedzi, A. E. K., Rattanaporn, . K. & Parakulsuksatid, P., 2022. Impeller selection for mixing high-solids lignocellulosic biomass in stirred tank bioreactor for ethanol production. Bioresource Technology Reports.
Aghaei, S., Alavijeh, M. K., Shafiei, M., & Karimi, K. (2024). Biomass and Bioenergy A comprehensive review on bioethanol production from corn stover : Worldwide potential , environmental importance , and perspectives. Biomass and Bioenergy, 161(April 2022), 106447. https://doi.org/10.1016/j.biombioe.2022.106447
Albernas, Y. C., Corsano, G., Cortés, M. G. & Suárez, E. G., 2017. Preliminary design for simultaneous saccharification and fermentation stages for ethanol production from sugar cane bagasse. Chemical Engineering Research and Design.
Baldino, C., Berg, . R., Pavlenko, N. & Searle, S., 2019. Advanced alternative fuel pathways: Technology overview and status. INTErnational Council On Clean Transportation.
Boonchuay, P. et al., 2018. An integrated process for xylooligosaccharide and bioethanol production from corncob. Bioresource Technology.
Brethauer, S., Shahab , R. L. & Studer, M. H., 2020. Impacts of biofilms on the conversion of cellulose. Applied Microbiology and Biotechnology .
Bu, C.-Y.et al., 2021. Comprehensive utilization of corncob for furfuryl alcohol production by chemo-enzymatic sequential catalysis in a biphasic system. Bioresource Technology.
Cha, Y.-L.et al., 2015. Bioethanol production from Miscanthus using thermotolerant Saccharomyces cerevisiae mbc 2 isolated from the respiration-deficient mutants. Renewable Energy.
Chang, Y. H., Chang, K. S., Chen, C. Y., Hsu, C. L., Chang, T. C., & Jang, H. Der. (2018). Enhancement of the efficiency of bioethanol production by Saccharomyces cerevisiae via gradually batch-wise and fed-batch increasing the glucose concentration. Fermentation, 4(2). https://doi.org/10.3390/fermentation4020045
Chen, C.-Y.et al., 2018. Enhancement of the Efficiency of Bioethanol Production by Saccharomyces cerevisiae via Gradually Batch-Wise and Fed-Batch Increasing the Glucose Concentration. Jornal Fermentation.
Chen, H. et al., 2017. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Processing Technology, pp. 196-206.
Deshmukh, M. & Pathan, A., 2024. Bambusa tulda: A potential feedstock for bioethanol and its blending effects on the performance of spark ignition engine. Renewable and Sustainable Energy Reviews.
Du, C. et al., 2020. Production of bioethanol and xylitol from non-detoxified corn cob via a two-stage fermentation strategy. Bioresource Technology.
Gaensly, F., Picheth, G., Brand, D., & Bonfim, T. M. B. (2014). The uptake of different iron salts by the yeast Saccharomyces cerevisiae. Brazilian Journal of Microbiology, 45(2), 491–494. https://doi.org/10.1590/S1517-83822014000200016
Gao, Y. et al., 2018. Ethanol production from sugarcane bagasse by fed-batch simultaneous saccharification and fermentation at high solids loading. Energy Science & Engineering.
Haditjaroko, L., Syamsu, K., Meryandini, A. & Manurung, A. J., 2014. Produksi Bioetanol Dari Hidrolisat Pati Singkong Racun Dengan Fermentasi Repeated-Batch Oleh Saccharomyces cerevisiae Terimobilisasi Pada Ampas Singkong. Jurnal Teknologi Industri Pertanian.
Hage, M. El, Louka, N., Rezzoug, S.-A., Maugard, T., Sable, S., Kouba, M., Debs, E., & Rezzoug, Z. M. (2023). Bioethanol Production from Woody Biomass : Recent Advances on the Effect of Pretreatments on the Bioconversion Process and Energy Yield Aspects. 16(5052). https://doi.org/10.3390/en16135052
IEA, 2022. Global Energy Review: CO2 Emissions in 2021.
Jahnavi, G., Prashanthi, G. S., Sravanthi, K. & Rao, L. V., 2017. Status of availability of lignocellulosic feed stocks in India: Biotechnological strategies involved in the production of Bioethanol. Renewable and Sustainable Energy Reviews.
Juliarnita, I. G. A., Hadisoebroto, R. & Rinanti, A., 2018. Bioethanol production from mixed culture microalgae biomass with temperature hydrolysis variation. MATEC Web of Conferences.
Kosaka, T. et al., 2020. Enhancement of Thermal Resistance by Metal Ions in Thermotolerant Zymomonas mobilis TISTR 548. Front Microbiol.
Lee, H. V., Hamid, S. B. A. & Zain, S. K., 2014. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process. The Scientific World Journal.
Li, R. et al., 2020. The Magnesium Concentration in Yeast Extracts Is a Major Determinant Affecting Ethanol Fermentation Performance of Zymomonas mobilis. Front Bioeng Biotechnol.
Mafa, M. S. et al., 2020. The Effects of Alkaline Pretreatment on Agricultural Biomasses (Corn Cob and Sweet Sorghum Bagasse) and Their Hydrolysis by a Termite-Derived Enzyme Cocktail. Journals of Agronomy.
Mankar, A. R., Pandey, A., Modak, A. & Pant, K., 2021. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresource Technology.
Maryana, R., Ma’rifatun, D., I, W. A., W, S. K., & Rizal, W. A. (2014). Alkaline Pretreatment on Sugarcane Bagasse for Bioethanol Production. Energy Procedia, 47, 250–254. https://doi.org/10.1016/j.egypro.2014.01.221
Nguyen, T. B. & Zondervan, E., 2019. Methanol production from captured CO2 using hydrogenation and reforming technologies_ environmental and economic evaluation. Journal of CO2 Utilization.
Parinduri, L., & Parinduri, T. (2020). Konversi Biomassa Sebagai Sumber Energi Terbarukan. Journal of Electrical Technology, 5(2), 88–92. https://www.dosenpendidikan.
Patra, C. A. F. (2022). Pengembangan Energi Terbarukan Dalam Upaya Mewujudkan Pembangunan Berkelanjutan Di Pt. Pertamina. Jurnal Green Growth Dan Manajemen Lingkungan, 11(2), 113–122. https://doi.org/10.21009/jgg.v11i2.28358 Pratama, A. W., Mulyono, T., Piluharto, B., Widiastuti, N., Mahardika, M., Tamam, B., Ali,
B. T. I., Asranudin, Allouss, D., & Elbalrhiti, I. E. A. (2023). Potential of cellulose from wood waste for immobilization Saccharomyces cerevisiae in bioethanol production. Journal of the Indian Chemical Society, 100(11), 101106. https://doi.org/10.1016/j.jics.2023.101106
Pratomo, J., Supartono & Cahyono, E., 2016. Pengaruh Selulase Berbagai Jamur Pada Hidrolisis Enzimatik Kulit Pisang Dalam Pembuatan Bioetanol. Indonesian Journal of Chemical Science.
Rachman, S. D., Maulida, N., Safari, A., Anggraeni, N. I., Fadhlillah, M., & Ishmayana, S. (2019). Peranan Ion Logam Kobalt Terhadap Kinerja Fermentasi dan Toleransi Cekaman Lingkungan Sel Ragi Saccharomyces cerevisiae. Chimica et Natura Acta, 7(3), 114. https://doi.org/10.24198/cna.v7.n3.26266
Ribeiro-Filho, N., Linforth, R., Bora, N., Powell, C. D., & Fisk, I. D. (2022). The role of inorganic-phosphate, potassium and magnesium in yeast-flavour formation. Food Research International, 162(October). https://doi.org/10.1016/j.foodres.2022.112044
Roberto , I. C., Castro , R. . C. A., Silva , J. . P. A. & Mussatto , S. I., 2020. settingsOrder Article Reprints. Energies .
Singh, Y. D., & Satapathy, K. B. (2018). Conversion of Lignocellulosic Biomass to Bioethanol: An Overview with a Focus on Pretreatment. International Journal of Engineering and Technologies, 15, 17–43. https://doi.org/10.56431/p-j5uq4j
Thangavelu, S. K., Ahmed, A. S. & Ani, F. N., 2014. Bioethanol production from sago pith waste using microwave hydrothermal hydrolysis accelerated by carbon dioxide. Applied Energy.
Topaloğlu, A. et al., 2023. From Saccharomyces cerevisiae to Ethanol: Unlocking the Power of Evolutionary Engineering in Metabolic Engineering Applications.
Tursi, A., 2023. A review on biomass: importance, chemistry, classification, and conversion. Biofuel Research Journal.
Walker, G. M. & Stewart, G. G., 2016. Saccharomyces cerevisiae in the Production of Fermented Beverages. Beverages .
Wongsurakul, P. et al., 2022. Comprehensive Review on Potential Contamination in Fuel Ethanol Production with Proposed Specific Guideline Criteria. Energies.
Yaverino-Gutiérrez, M. A. et al., 2023. Perspectives and Progress in Bioethanol Processing and Social Economic Impacts. Journals of sustainability.
Yaverino-Gutiérrez, M. A. et al., 2024. Perspectives and Progress in Bioethanol Processing and Social Economic Impacts. Journal of Sustainability.
Zhang, P. et al., 2023. Assessment of advanced bioethanol potential under water and land resource constraints in China. Renewable Energy.
Zhou, Z., Peng, S., Jing, Y., Wei, S., Zhang, Q., Ding, H., & Li, H. (2023). Exploration of separate hydrolysis and fermentation and simultaneous saccharification and co- fermentation for acetone , butanol , and ethanol production from combined diluted acid with laccase pretreated Puerariae Slag in Clostridium beijerinckii ART44. Energy, 279(June), 128063. https://doi.org/10.1016/j.energy.2023.128063